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VORTEX DRAG OF A PLATE DURING VIBRATIONS IN A SLIGHTLY VISCOUS FLUID" 

V.A. BUZHINSKII 

The harmonic vibrations of a plate in a homogeneous incompressible 
fluid at rest at infinity are considered. It is assumed that the 
vortex flow is localized because of viscosity in a small neighbourhood 
of the plate edges, while the fluid stream generating this flow is 
described by the principal term of the expansion of the potential with 
a singularity for the velocity at the edge. This singularity is 
characterized by a velocity intensity factor. A relation is set up 
between this factor and the kinetic energy of the fluid and methods to 
determine it are examined. Necessary conditions for the existence of 
the hypothesized fluid flow axe clarified. Asymptotic dependences are 
obtained for the energy of vortex formation and the drag coefficient 
when these conditions axe satisfied. A comparison is made with 
experimental data. 

2. The vetoc.%Qj Cn*ensity factor. We consider an ideal incompressible fluid flow without 
vortices past an extended infinitely thin plate with an arbitrary smooth surface and boundary 
contour (Fig.1). We select a point on the boundary at which we &X+W a tangent plane to the 
plate surface. We let ‘n and T denote unit vectors along the normal. and tangent to the 
boundary contour in this plane. We define the unit vector of the binormal e = 'c x n, We 

connect a local rectangular coordinate system 0x9 whose x and y axes are directed along n 
and e, respectively, to each point of the boundary. 

Fig.1 Fig.2 

The fluid flow in a small neighbaurhood of the plate edge is almost planar, hence the 
complex potential and velocity in the xg plane can be represented in the form /1/ 

w zz .&‘I*, v’ i= VaA&, z = x + iy (1.1) 
where A is a complex constant for the selected point of the contour. If the fluid flow is 
non-stationary, then A depends on the time t, which plays the role of a parameter. The 
fluid velocity has a singularity at the point z = 0. 
power and the quantity A. 

This singu,arity is characterized by a 
The velocity along x is finite at any point. 

In addition to the complex coefficients A we introduce real coefficients according to 
the formula 

Ku2 = ri,nAJ$ El.3 

and we denote by K, the velocity intensity factor (VIFI. We will show that the square of 
the VW characterizes the fluid kinetic energy density T near the plate edge. Using the 
asymptotic representation (1.1) and the definition (1.2), we obtain 

AXlAl = V,pKu2ilr 

where p is the fluid density, Al is a Small length element for the edge, and Ar is the 
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radius of a small circle with centre at the point 0 (Fig.2). 

2. Determinution of the VIF. The coefficients A and K,, depend on the location of the 
point on the boundary contour, the plate geometry, and the domain occupied by the fluid, as 
well as on the boundary conditions. 

We will examine the plane problem of the flow past a fixed plate of infinite span by an 
ideal incompressible fluid whose velocity v, at infinity is constant in magnitude and 
direction. The problem can be inverted by considering that the plate moves while the fluid 
is at rest at infinity. If the function 

2 = f (5) = '/,5 + E* _t $5~' + . . . (2.1) 

realizes the conformal mapping of the exterior of the plate in the physical complex z plane 
into the exterior of a circle of radius R in an auxiliary complex plane 5, then i2f 

dwfdz = ‘i, (T, - v,R25-2)d~/dz (3.2) 

It can be assumed that the plate edge is at a point z* on the real axis while the point 
c* = Re-'a is its image in the plane 5 where a is a certain angle. In a small neighbour- 
hood of the edge 

dydz = g (2&z - ZJ'!' (2.3) 

Substituting (2.3) into (2.2) and comparing with (1.1) for 5 = j,, we obtain 

A = -26g (z,)u, sin (0 + a)e& (2.4) 

where fl is the angle between the direction of the velocity and the real axis. 
The coefficient A can be evaluated from (2.4) when the mapping (2.1) is known. Thus, 

for a straight plate 
KC2 = ",'&u_~ sin" 0 (2.5) 

where R is the plate width, and 0 is the angle between the plate and the velocity. For the 
arc of a circle of radius R with half the aperture angle 2p 

A,.2 = ~Rv,~ sin? (0 f 13) sin 2p (".tJ) 

where f3 is the angle between the chord of the arc and the velocity. It follows from (2.4) 
that a direction 8 = --Q: always exists for which A=0 and K, = 0. 

We will obtain a relation that enables the VIF calculation to be simplified in a number 
of cases. Let us decrease the size of the plate by displacing points of the boundary contour 
?. by the same amount 6n opposite to n while keeping the pressure unchanged on different 
sides of the surface of the discontinuity formed. Let us change to local coordinates connected 
to the new edge while retaining the previous notation x and y for them. Every potential 
motion of a homogeneous incompressible fluid can be considered to originate from a state of 
rest because of an impact /3/; consequently, the change in fluid kinetic energy after removal 
of the pressure will be 

where pt is the pressure pulse. The values of the velocity v and the potentials u'+ and 
on different sides of the surface are determined from fl.l), where the potential 

determined by replacing z by z + aa. 
is 

Evaluating the integral over I we find 

(2.7) 

Application of the dependence obtained is especially effective in cases when the form of 
the change in K, is known along the length of the contour '1 from symmetry considerations. It 
is possible to calculate K, by changing part of the plate boundary contour and evaluating 
the integral in (2.7) on only this part of the contour. 

As an example we examine the application of the dependence (2.7) to determine Kl, for 
motion perpendicular to its plane by a thin circular disc in an unbounded fluid at rest at 
infinity. The fluid kinetic energy will be 

T = 'I,pvo2 = 4i,pR3u,2 (2.8) 

where n is the apparent mass, and u0 and R are the disc velocity and radius. Assuming 
6% = 6R and substituting (2.8) into (2.7) we find 

A-," = Jn-1&,: (".it) 
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In the general case, numerical methods must be relied upon to determine the VIF. It is 
also useful here to utilize the dependence (2.7) to refine the results obtained. An analytical 
solution can be obtained for an elliptic plate, which is of interest in that K, depends on 
the location of a point on the boundary contour. For flat plates K,, obviously depends only 
on the velocity component normal to the plate; consequently, it is sufficient to consider the 
plate motion perpendicular to its plane. The solution of this problem is analogous to the 
determination of the stress intensity factors for an elliptic crack in a solid body, known 
from linear fracture mechanics (/4/, pp.149-156), consequently 

f( a2 sin2 ip + bZ COG ‘p)*/t, k2 = 1 _ ._$ 

where a and b are the semimajor and semiminor axes of the ellipse, g, is an angle governing 
the parametric coordinates of a point on the ellipse: z = acoscp, y = b sin (p; ~(~) is the 
complete elliptic integral of the second kind. At the ends of the semimajor axis Ku2 is 
bia times less than at the ends of the semiminor axis. Relations (2.5) and (2.9) are 
obtained as special cases from (2.10) for k = 1 and k=O. 

3. Energy of vortex forth &&ng p&r&e vibrations in a ftuid. Consider the harmonic 
oscillations of a plate in an unbounded fluid at rest at infinity. The radii of curvature of 
the surface and boundary contour of the plate are considered to be quantities of the same or 
greater order than its characteristic transverse dimension. We will write the complex 
potential of the fluid flow in the neighbourhood of the edge in the form 

u: = AZ”* cos wt (3.1) 

where w is the vibration frequency. As above, only the principal term of the expansion that 
results in a singularity for the velocity and consequently plays a special role is retained 
in the complex potential. Unlike (l.lf, the time dependence is extracted explicitly here; 
consequently, the amplitude values are denoted by A and A,,. 

We will now assume that the flow past the plate occurs so that the quite complex vortex 
flow occurring at all points of its contour is localized because of viscosity in a small 
neighbourhood of the edge; outside this neighbourhood the representation (3.1) holds asymp- 
totically, Let us clarify the condition necessary for this. 

The governing parameters characterizing fluid flow in the neighbour~ood of the edge are: 
the fluid density p, the vibration frequency w, the fluid kinematic viscosity Y and the 
coefficient K,. In addition to the characteristic dimension R of the plate we introduce the 
linear scale 8 = (vlo)‘f*, that characterizes the thickness of the oscillating boundary layer, 
and the linear scale, d = (KJco)‘l~, that characterizes the dimension of the vorticity domain 
near the sharp edge. 

Satisfaction of the conditions 
6lR < diR < 1 (3.2) 

is necessary for the assumed flow to exist. 
If conditions (3.2) are not satisfied, then the vortex flow cannot be considered as an 

imposition on a flow with the complex potential (3.1). 
We note that K, - R’h,,, where vg is the characteristic amplitude of the plate 

velocity, and consequently d/R .- (v,,i&)% It hence follows that the condition dlR <il is 
satisfied for large Strouhal numbers Sh=wRiv, or, equivalently, for small relative ampli- 
tudes of the plate vibrations. Conditions (3.2) can be written more roughly (in terms of the 
global flow characteristics) in the form 

Re-'I* < Sh-'fa < 1, Re = C&~/V 

If conditions (3.2) are satisfied, 
the fluid flow in the"far" 

then the VIF K,T is a unit parameter characterizing 

in the "near" 
neighbourhood of the edge and the formation of the vorticity domain 

neighbourhood of the edge. Consequently, the dimensions of a very small 
vorticity domain depend asymptotically on K, and are explicitly independent of the geometric 
parameters of the plate and the boundary conditions far from the edge. It is clear that the 
assumption made here that the fluid occupies a boundless space is not essential. Converging 
vorticity reconstructs the flow near the edge in such a way that the velocity singularity 
caused by the main inviscid flow with complex potential (3.11 is eliminated. 
are generally not formed on the sections of the plate boundary where 

Vorticity domains 

free potential flow. 
K, = 0 for a separation- 

Assuming conditions (3.1) to be satisfied, 
formation in a small element 

we will determine the energy dE of vortex 
& of the plate boundary contour in the vibration period. A 

single dimensionless combination 

n, = K,,W (VW-‘fa) (3.3 
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equivalent to the Reynolds number of the local flow, can be constructed from the governing 
parameters p+o,y and K,. Applying the n-theorem of similarity /5/, we obtain 

dE 1 dl = B (nl) pKw8k-‘!~ (3.4) 

Since (3.3) reduces to the form scl = d';6^ it follows from (3.2) that ~~;;--l. Con- 
sequently, it can be assumed that the coefficient 3 does not depend on the Reynolds number, 
l.e., it is a constant. 

Experimental investigations 16, 7/ show that the vortex drag during plate vibrations in 
a fluid is independent, in practice, of the Reynolds number as it varies over a broad range 
of values Re = lo3 -106. The total energy of vortex formation during the period of vibration 
is found by integrating 13.4) over the boundary contour 

E = Upw-~‘~~ .i A-,.“, dl \:1.5t 

The mode of plate motion was not made specific when deriving the dependence (3.5) and 
can be arbitrary, as long as the assumptions made are not disturbed. The elastic vibrations 
of a plate are an important special case. 

4. Vortex resistance during harmonic osci~&ztions of a pkxte. Available experimental 
data /7/ can be represented in the form of the dependence of the average (on the basis of 
equality of work during the vibration period) of the drag coefficient c, on the Strouhal 
number oR/v,, since no noticeable dependence of c, on the Reynolds number has been found. 
We will represent the drag force acting on the plate in the form /61 

F = --I/2c,pS /vi Y, v = \,, cm wt 

where S is the area of the middle section. Equating the work of this force per period of 
vibrations to the energy of vortex formation (3.5) we find 

Formula (4.1) yields the dependence of the plate drag resistance coefficient on the 
relative amplitude of the vibrations. This dependence is quite different from that in /%/, 
obtained for small plate vibrations in a fluid flow with a significant velocity. 

The VIF K,, can be determined theoretically. Consequently, the single unknown quantity 
in (4.2) remains the coefficient B. Since this coefficient is a universal constant under the 
assumptions made, it can be found if the dependence of c, on the vibration amplitude is 
determined numerically or experimentally for any one plate. 

Values of c, were determined experimentally for rings and long plates of constant width 
under forced vibrations in a direction perpendicular to their plane. These results were 
approximated by the dependence c, = K b,i(Ro)l*, and the values of K and n were found by 
least squares. The dependence (4.1) with K ~4.6 was obtained, in particular, for conditions 
corresponding to plate vibrations in an unbounded fluid. 

Determining K, by (2.5) for 0 ='i& in the case under consideration and substituting 
it into (4.21, we obtain K = ?, (z/,n~B. Hence Bz 1.7, 

Consequently, if conditions (3.2) are satisfied approximately, the problem of determining 
the energy of vortex function and the vortex drag during harmonic vibrations of a plate 
reduces to determining the VIF within the framework of the concept of separation-free potential 
fluid flow. 

Let us consider two examples. We will compare the vortex drag for vibrations in a 
direction normal to its plane for a free plate of infinite span and for the same plate arranged 
by one of its infinite edges in an infinite plane wall. Putting K,%= ~Rv,,~ into f4.2), we 
obtain K = 5.7. Comparing with K-4.6, for a free plate, we find that the plate drag at 
the wall is 1.25 times greater, which is in agreement with experimental data /7/. 

We will determine the vortex drag of a thin circular disc performing vibrations per- 
pendicular to its plane. Substituting (2.9) into (4.2), we find R-3.5. 

We present a comparison with experimental data obtained by I.M. Mel'nikova in tests on a 
circular plate of diameter 1.5m in an air medium. The logarithmic damping decrement of the 
free plate vibrations on an elastic suspension was determined in these tests. For weak damping, 
the decrement 6 of the vibrations can be calculated as the ratio between the vortex formation 
energy (3.5) and twice the total vibration energy, which yields 

(4.3) 

where u is the generalized mass taking the suspension and the apparent mass of the air into 



195 

account. 
The experimental data represented in Fig.3 are obtained for the frequency 0/(2x)= 0.4~' 

and corresponds to p= 11.3 kg. The dependence (4.3) computed for this case by using (2.9) is 
displayed in Fig.3 by a curve that lies below the test data, where the discrepancy grows as 
the vibrations amplitude increases, and reaches 25% for z?,/(oR)= 0.16. 

RI 

Fig.3 

If the asymptotic nature of the dependence (4.3) is taken into account, the agreement 
with experimental data can be considered satisfactory. The discrepancy noted above can here 
be explained by the following reasoning. The error in determining the universal constant B 
by the experimental data in /7/ is around 15% because of their spread. The test data rep- 
resented in Fig.3 are more accurate but a certain influence of small stiffener ribs that were 
fastened to the plate to eliminate its elastic vibration was not taken into account in the com- 
putation. Taking the above into account, it is more correct to take B = 2, roughly. The 
dependence corresponding to this value of B is shown dashed in Fig.3. 

The author is grateful to particular at the seminar supervised by G.G. Chernyi for dis- 
cussing the research and for useful remarks. 
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